Semaines 2 et 3

Lundi, 10 juillet: Les solides

Mardi, 11 juillet : L'homothétie et les figures semblables

Mercredi, 12 juillet:

Les types de situation et les modes de représentation

Jeudi, 13 juillet : Les probabilités

Vendredi, 14 juillet : Examen

Lundi, 17 juillet : Les statistiques et les pourcentages

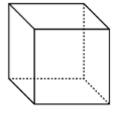
Notes de cours

Mathématiques 2e secondaire Été 2017

Nom:			

Table des matières

COURS 4 :	4
L'aire des solides	4
Les solides	4
Le cube	4
Les prismes	4
Les pyramides	6
Le cylindre	8
Les solides décomposables	12
COURS 5 :	14
L'homothétie et les figures semblables	14
COURS 6 :	20
Les types de situation et les modes de représentation	20
Les modes de représentation	20
Situation de proportionnalité (rappels)	25
Situation inversement proportionnelle	29
Les situations linéaires	31
COURS 7 :	33
Définitions générales	33
La règle de la multiplication	34
La probabilité théorique	35
Le calcul des probabilités	36
L'arbre de probabilités	38
Indépendant ou dépendant?	39
Avec ou sans remise	40
Diagramme de Venn	41
Les types d'événements	42
COURS 8 :	44
Les pourcentages et les statistiques	44
Pourcentages	44
Les statistiques	46
Modes de représentation en statistiques	46


COURS 4:

L'aire des solides

Les solides

Le cube

Aire totale : $6c^2$

Les prismes

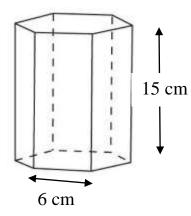
Un prisme est formé de deux _____ qui sont reliées à l'aide de parallélogrammes.

Un prisme est dit ______ si ses bases sont des polygones réguliers.

Sinon, il est _____.

L'aire d'un prisme :

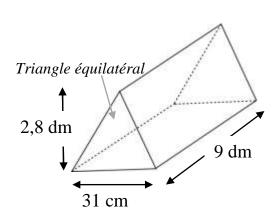
Aire totale = Aire des bases + Aire latérale


L'aire des bases est l'aire des deux polygones isométriques et parallèles de ce prisme.

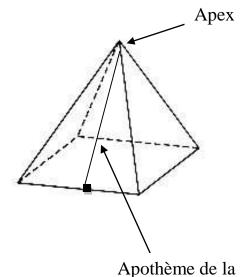
Aire latérale = (Périmètre de la base) • hauteur

Exemple:

Déterminer l'aire des prismes suivants :


a)

L'apothème de l'hexagone est de 4 cm.


Réponse :

b)

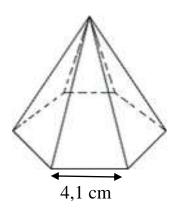
Réponse : _____

Les pyramides

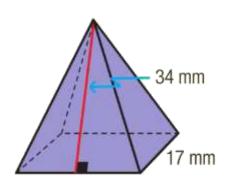
La hauteur d'une pyramide est la distance entre l'_____ et la base de la pyramide.

pyramide (a)

L'aire d'une pyramide :



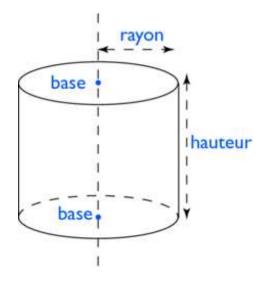
L'aire de la base d'une pyramide est l'aire du polygone formant la base de la pyramide.


Aire latérale =
$$\frac{(P\acute{e}rim\grave{e}tre\ de\ la\ base) \bullet a_p}{2}$$

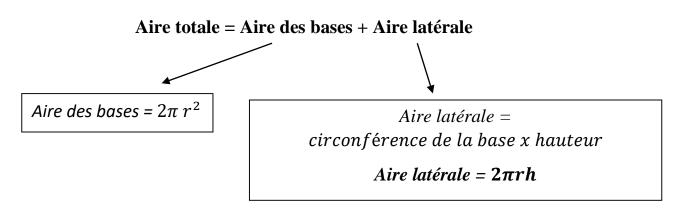
Exemple:

Détermine l'aire totale des pyramide ci-dessous.

L'apothème de cette pyramide est de 130 mm et l'apothème de l'hexagone est 2,05 cm

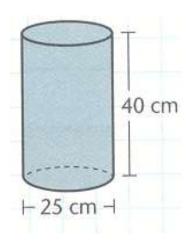


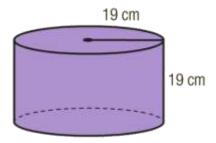
Le cylindre

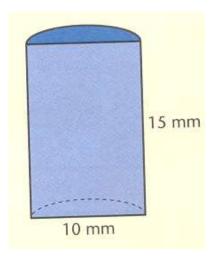

Un cylindre est constitué de trois faces : deux disques, et un _____.

- Les bases sont des disques ______ et _____.
- La face latérale est un _____ qui est perpendiculaire aux bases.

La _____ correspond à la distance entre les deux bases.




L'aire d'un cylindre:


Exemple:

Quelle est l'aire totale des cylindres ci-dessous ?

Quelle est l'aire de ce demi-cylindre ?

Réponse:

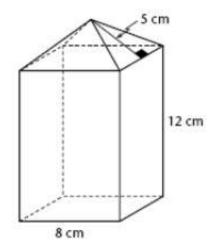
Complète le tableau suivant.

Cylindre droit circulaire	Rayon de la base (cm)	Hauteur (cm)	Aire d'une base (cm²)	Aire latérale (cm²)	Aire totale (cm²)
A	8	6			
В		4	254, 47		
C			132, 73		408,4

<u>Calculs:</u>

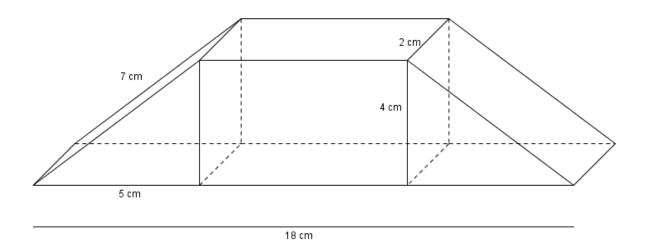
Cylindre A

Cylindre B


Cylindre C

Les solides décomposables

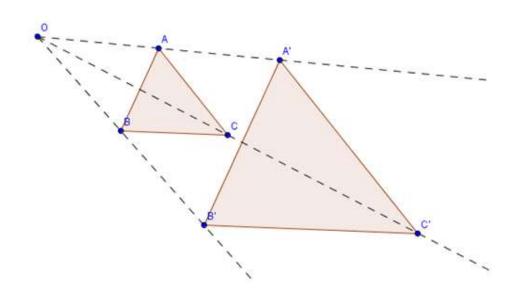
Un solide décomposable est un solide pouvant être _____



Quelle est l'aire du solide illustré ci-contre?

Exercice:

Détermine l'aire de ce solide.


COURS 5 :

L'homothétie et les figures semblables

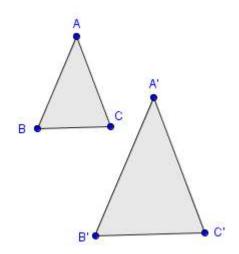
L'homothétie

L'homothétie est une _____ qui permet d'associer à toute figure initiale, une figure image selon un point fixe, nommé _____, et un rapport, nommé _____.

Exemple d'homothétie:

Dans ce cas, le point O représente ______

Le rapport d'homothétie ou de similitude (k) correspond à :


k = -----

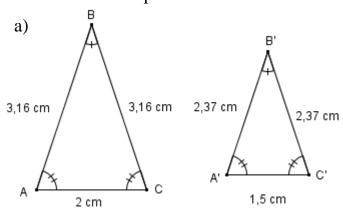
Agrandissement:	k □ 1
Réduction :	k <u>□</u> 1
Reproduction exacte:	k □ 1

L'homothétie	est	une	transformation	qui	permet	d'obtenir	des	figures

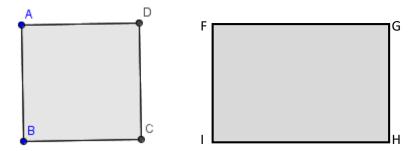
Les figures semblables

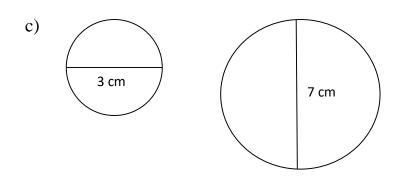
Deux figures sont ______ lorsque l'une est un agrandissement, une réduction ou une reproduction exacte de l'autre.

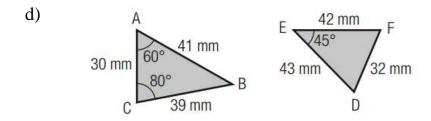
 Δ ABC \sim Δ A'B'C'

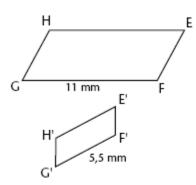

Il y a deux conditions à respecter pour que des figures soient semblables :

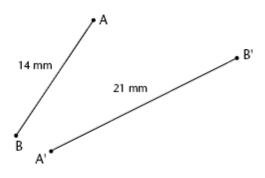
1) Les angles homologues sont ______.


2) Les mesures des côtés sont ______.

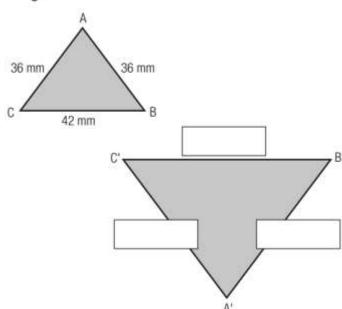

Exercices


1. Identifie les couples de figures semblables. S'il s'agit de figures semblables, trouve le rapport de similitude. Si non, justifie pourquoi elles ne sont pas semblables.

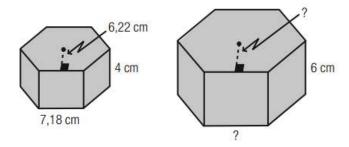

b)



2. Dans chaque cas, détermine le rapport de similitude.



k = _____


3. Détermine les mesures manquantes sachant que les triangles ci-dessous sont semblables.

$$k=\frac{11}{6}$$

4. Trouve le rapport de similitude et les données manquantes sachant que ces deux prismes sont semblables.

Deux prismes réguliers à base hexagonale.

- **5.** L'échelle du plan d'un camion est 1 :52.
 - a) Quelle est la largeur réelle si elle est de 8 cm sur le plan?
 - b) Quel est le diamètre réel d'une roue s'il est de 2,5 cm sur la plan?
 - c) Quelle est la longueur du camion sur le plan si elle est de 10,4 m dans la réalité?
 - **d)** Quelle est la hauteur du camion sur le plan si elle est de 3,12 m dans la réalité?

COURS 6:

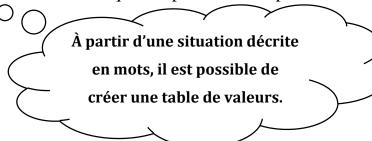
Les types de situation et les modes de représentation

Les modes de représentation

Il existe plusieurs manières de représenter une situation. Ces moyens permettent de la comprendre et de l'analyser.

Les mots

Les mots permettent une description sommaire d'une situation.


Exemple:

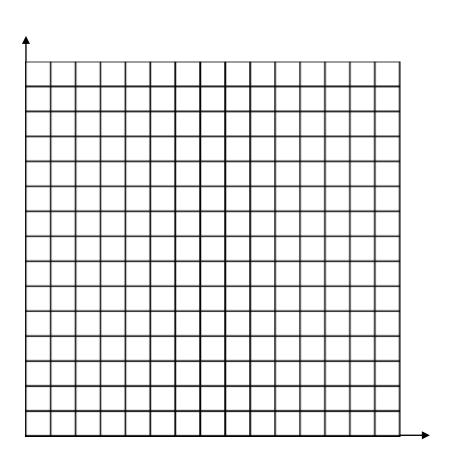
Ariane travaille dans une agence de voyage. Elle a un salaire de base de 100\$ et elle gagne également 13\$ par heure travaillée.

L'état in	itial est :
Descrip	tion de la variation de chacun des éléments de la situation :

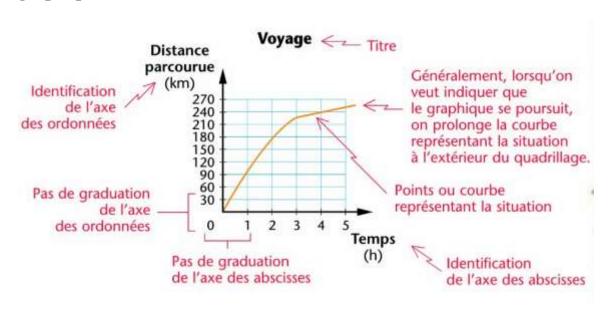
Table de valeurs:

Une table de valeurs est un tableau qui comprend des couples de valeurs.

Nombre d'heures travaillées	Salaire (\$)
0	
•••	•••


Nombre d'heures travaillées	0		
Salaire (\$)			

Deux manières sont utilisées pour représenter une table de valeurs, soit de manière horizontale ou de manière verticale


Graphiques

À partir d'une table de valeurs, on peut créer un graphique. La représentation graphique d'une situation permet de visualiser comment les variables se comportent l'une par rapport à l'autre.

Un graphique doit	toujours avoir un	représentatif.		
L'	et la		des	axes
sont deux choses t	rès importantes dans une r	eprésentation graphique	e.	

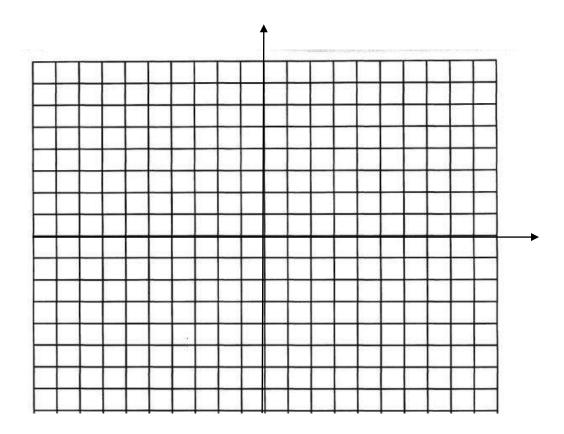
<u>Plusieurs éléments sont essentiels dans la représentation graphique :</u> Voici un exemple illustrant les principaux éléments d'une représentation graphique :

La règle

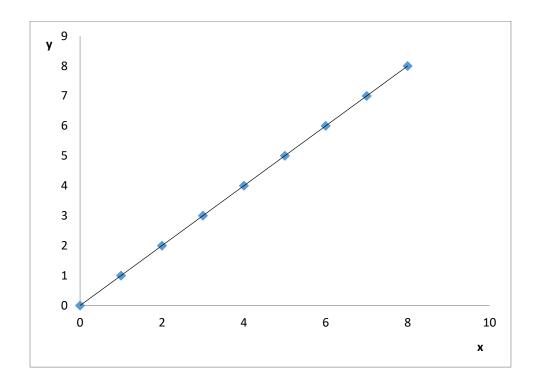
Une règle est une équation qui ______ entre des variables.

Quelle est la règle de la situation décrite précédemment?

Dans une règle, il faut toujours indiquer ce que représentent .


Exercice:

Le prix d'une entrée au zoo varie selon l'équation suivante :


$$y = 20x + 5$$

y est le prix payé et x est le nombre de personnes.

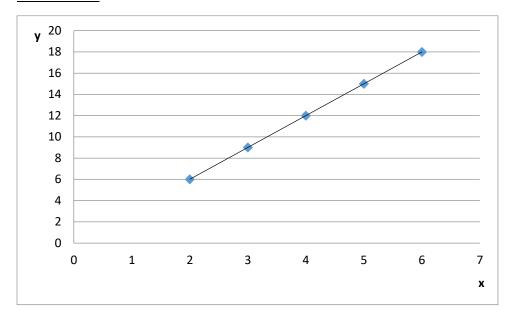
Représente cette situation graphiquement.

Situation de proportionnalité (rappels)

Lorsqu'on parle d'une situation de proportionnalité, le rapport des y et des x de chaque point reste constant.

Point 1:
$$\frac{y}{x} = - =$$

Point 2:
$$\frac{y}{x} = - =$$


Point 3:
$$\frac{y}{x} = - =$$

Point 4:
$$\frac{y}{x} = - =$$

Les situations qui	sont dites	proportionnelles passent	
toujours par l'		(0,0).	

X	0	2	4	6
у	0	2	4	6

Exercices:

1. Le graphique ci-dessus représente-t-il une situation de proportionnalité? Justifie ta réponse.

2. Complète le tableau ci-dessous.

X	1	3	5		
у	5			15	2x + 3

S'agit-il d'une situation de proportionnalité?

Description en mot	S																	
Thomas gagne 12\$/	heu	ire (con	ıme	e sa	uve	teu	r à l	la p	isci	ne	mu	nici	pal	e			
Thomas gagne 12\$/ Table de valeurs	'heu		com	nme		uve	teu	a l	la p			mu	nici	pal (e			
Représentation graphique																		
															_			
	H		-					_	-				\vdash	\dashv	-			
														\dashv	_			
																→		
<u>La règle</u>																		

Comment reconnaître une situation de proportionnalité ?

1. Dans une table de valeurs

Dans le cas d'une situation de proportionnalité, la tab	le de valeurs possède
toujours un point ayant les coordonnées	ainsi qu'un
	(a)
qui se calcule en effectuant	·

2. Dans un graphique

Le graphique représentant une situation de proportionnalité est :

- Une droite passant par l'origine du plan cartésien (0, 0).

OU

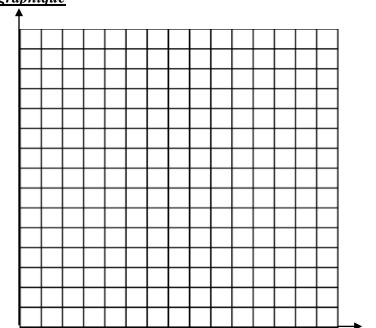
- Une série de points appartenant à une droite oblique passant par l'origine.

3. À partir d'une règle

La règle d'une situation de proportionnalité est toujours de la forme :

 $y = a \cdot x$

Situation inversement proportionnelle


Description en mots

On attend entre 8 et 26 personnes pour une fête. Pour l'occasion, on a acheté 6 gâteaux et chacun est coupé en 8 morceaux. On s'intéresse à la relation entre le nombre de personnes présentes à la fête et le nombre de morceaux de gâteaux pour chaque personne.

Tuvie de valedis	Table	de	valeurs
------------------	--------------	----	---------

Nombre de personnes	Nombre de morceaux de gâteaux
8	
12	
16	
24	

<u>Comment reconnaître une situation inversement proportionnelle</u> (variation inverse)?

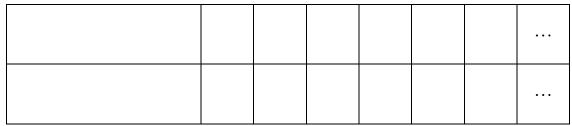
1. Dans une table de valeurs

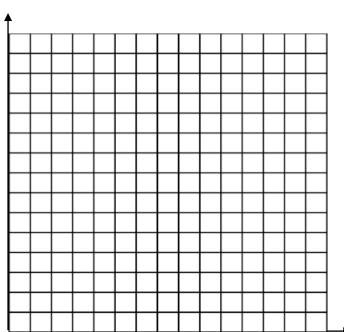
Dans	le	cas	d'une	situation	inversement	proportionnelle,	lorsque	l'on
multij	plie	les v	aleurs c	le la variab	ole x par les va	aleurs de la variabl	le y assoc	iées,
le							·	

2. Dans un graphique

Le graphique représentant une situation inversement proportionnelle est : Une courbe qui tend à s'approcher des axes <u>sans jamais y toucher</u>.

OU


Une série de points appartenant à une courbe qui tend à s'approcher des axes sans jamais les toucher.


Les situations linéaires

Jonathan est plombier, il charge 60\$ pour le déplacement et il a un salaire horaire de 40\$. On s'intéresse à la relation entre le nombre d'heures travaillées et le salaire reçu.

a) Représente graphiquement et à l'aide d'une table des valeurs la situation ci-dessus.

b) Détermine la règle associée à cette situation.

Règle:

La règle d'une situation linéaire

$$y = taux de variation(x) + valeur initiale$$

$$y = ax + b$$

Le taux de variation (a) associée à une droite se calcule en faisant :

$$a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{bond \ y}{bond \ x}$$

Exemple 1:

Une droite passe par le point (0,3) et elle a un taux de variation de 2.

Quelle est la règle associée à cette droite?

Exemple 2:

Une droite passe par le point (2,11) et elle a un taux de variation de -3.

Quelle est la règle associée à cette droite?

COURS 7 :

Les probabilités

Définitions générales			
Une <u>expérience aléatoire</u> relève d	lu	Il est donc _	
de prédire avec certitude le résult	at.		
Il existe deux types d'expérience	aléatoire:		
• Simple: étape			
Exemple:			
• Composée:	étapes		
Exemple:			
<u>Univers de possibles</u>			
Dans une expérience aléatoire,			_ représente
tous les résultats possibles. On le	e note Ω (omega)		
Exemple:			
a) Quel serait l'univers des possi	oles du lancer d'u	ın dé ?	
$\Omega =$			
b) Ouel serait l'univers des pos	sibles de la pige	dans un sac c	ontenant les

voyelles?

Ω = _____

Un est un sous-ensemble de l'univers des possibles.
On note les événements par des lettres majuscules.
A = {Obtenir un nombre pair sur un dé} est un événement.
A =
La règle de la multiplication
Nombre total de résultats possibles = Produit des nombres de résultats
possibles pour <u>chaque étape</u>
1. Combien de combinaisons à quatre chiffres peut-on former si on ne peut
réutiliser un même chiffre?
Réponse:

La probabilité théorique

 $Probabilité théorique = rac{Nombre de résultats favorables}{Nombre de résultats possibles}$

*Remarque : La probabilité	d'un	événement	est	toujours	un	nombre	entre
et							

- Lorsqu'une probabilité vaut **0**, cela signifie que l'événement est
- Lorsqu'une probabilité vaut <u>1</u>, cela signifie que l'événement est

Exercices:

Un sac contient des jetons sur lesquels sont inscrites les 26 lettres de l'alphabet.

Quelle est la probabilité des événements suivants?

- 1) P(obtenir un m) = _____
- 2) P(obtenir une voyelle) = _____
- 3) P(obtenir un c ou un d) = _____

Détermine la probabilité de :

- 2) Piger une carte de cœur?
- 3) Piger un roi?_____
- 4) Piger une carte noire?

Le calcul des probabilités

• La probabilité d'un événement composé de plusieurs événements élémentaires est égale à la somme des probabilités de ces événements élémentaires

Lorsqu'il y a <u>un choix</u> ou <u>plusieurs options</u>, on additionne les probabilités de chaque option.

Exercice:

Un bocal contient 4 billes bleues, 2 billes rouges, 3 billes vertes.

Quel est la probabilité de l'événement «tirer une bille rouge **ou** une bille bleue»?

D /					
Réponse	•				
Keponse	• _				

• La probabilité d'un résultat d'une expérience aléatoire à plusieurs étapes est égale au **produit** de chacune de ses composantes.

ET Mu	ltiplication de probabilités
SUIVI DE	Multiplication de probabilités

Dans un sac contenant 4 billes rouges, 3 billes bleues et 2 billes vertes. On pige 2 billes consécutives. On remet les billes dans le sac entre chaque pige. Calcule la probabilité de tirer une bille rouge suivie d'une verte.

Réponse :		
Renonce:		
ixebonse.		

L'arbre de probabilités Il s'agit d'un _____ qui contient les probabilités. Exemple d'arbre de probabilités Une urne contient 4 billes rouges (R), 2 billes bleues (B) et une bille verte. On tire successivement et avec remise 2 billes de l'urne. Construis l'arbre de probabilités représentant cette expérience aléatoire.

Étape	es de cons	truction:	-				
1.							
2.							
3.							
4.							
5.							
Inde	<u>épenda</u>	nt ou d	<u>lépendant?</u>	_			
Les	étapes	d'une	expérience	aléatoire	composée	sont	dites
		S	i les résultats	d'une étape	n'influencent	t pas ce	ux des
autre	s étapes.						
Exem	nple :						
Les	étapes	d'une	expérience	aléatoire	composée	sont	dites
		si	les résultats d'	'une étape <u>i</u>	nfluencent ce	eux des	autres
étape	es.						
Exem	<u>nple</u> :						

<u>Exercice</u> : Dites si les expériences suivantes sont dépendantes ou
indépendantes.
1) Dans une boîte de chocolat assortis, choisir un chocolat, le manger et en choisir un deuxième.
2) Deux lancers consécutifs d'un dé.
3) Dans un concours, on doit répondre à une question pour gagner un prix:
une roulette détermine la question à laquelle il faut répondre; l'autre
roulette détermine le prix à gagner.
Avec ou sans remise
Une expérience aléatoire <u>avec remise</u> est une expérience aléatoire composée
Exemple:
Une expérience aléatoire <u>sans remise</u> est une expérience aléatoire composée
Exemple:

Une urne contient 4 billes rouges (R), 2 billes bleues (B) et une bille verte(V).
On tire successivement et sans remise 2 billes de l'urne. Construis l'arbre de
probabilités représentant cette expérience aléatoire.

Les types d'événements

Evenements compatibles: Des evenements sont dits compatibles
lorsqu'ils ont un résultat favorable en commun.
Exemple:
<u>Événements</u> incompatibles: Des événements qui n'ont
favorable en commun.
Exemple:
Événements complémentaires: Des événements incompatibles qui, une
fois réunis, donnent Donc, les deux
ensembles se
Exemple:

Exercice:
Décris les événements suivants.
a) A : Obtenir une voyelle
B : Obtenir une consonne
b) C : Obtenir une des cinq premières lettres de l'alphabet
D :Obtenir une lettre du mot <i>probabilité</i>

COURS 8:

Les pourcentages et les statistiques

Pourcentages

Pourcentage d'un nombre

<u>Exemple</u>	:
	_

1) 40% de 60 =
2) 25% de 70 =
2) 2 50/ 1 200
3) 26% de 208 =
Le calcul du 100%
Exemples
1) 20% des élèves représentent 106 élèves. Combien y a-t-il d'élèves dans cette école?
Réponse :
2) 3500 briques représentent 25% d'une construction. Combien de briques
faudra-t-il pour terminer cette construction?
Dánanas .
Réponse :

Exemples sur les taxes et les pourcentages

Détermine la solution de chacune des situations suivantes :

1) On accorde une réduction de 15% sur un gilet marqué 16,99\$. Quel es le prix avant les taxes?
Réponse :
2) Sur des achats de 365,78\$, quel est le montant (15%) à payer si tous le articles sont taxables?
Réponse :
3) On paie un DVD 17,09\$. Quel était le prix avant les taxes (13%)?
Réponse :
4) J'économise 4,50\$ sur le prix d'un disque compact, ce qui représent
un rabais de 25%. Quel était le prix de ce disque avant la réduction?
Réponse :

Les statistiques

Modes de représentation en statistiques

Tableau de distribution

Complète le tableau de distribution suivant.

Repas préféré	Effectif	Fréquence
Pizza	12	
Pâtes	25	31,25
Hamburger		
Total:	80	100

<u>Effectif :</u> L'effectif représente le nombre de fois que revient une modalité ou				
une valeur. Par exemp	le, il y a 25 personnes qui aiment les pâtes.			
25 est	_ et les pâtes représentent une			
<u>Fréquence :</u> Il s'agit d	e l'effectif exprimé en			

Bonne révision!